首页> 外文OA文献 >OKPS: a reactive/cooperative multi-sensors data fusion approach designed for robust vehicle localization
【2h】

OKPS: a reactive/cooperative multi-sensors data fusion approach designed for robust vehicle localization

机译:OKPS:一种反应式/协作式多传感器数据融合方法,旨在实现可靠的车辆定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the Optimized Kalman Particle Swarm (OKPS) filter. This filter results of two years of research and improves the Swarm Particle Filter (SPF). The OKPS has been designed to be both cooperative and reactive. It combines the advantages of the Particle Filter (PF) and the metaheuristic Particle Swarm Optimization (PSO) for ego-vehicles localization applications. In addition to a simple fusion between the swam optimization and the particular filtering (which leads to the Swarm Particle Filter), the OKPS uses some attributes of the Extended Kalman filter (EKF). The OKPS filter innovates by fitting its particles with a capacity of self-diagnose by means of the EKF covariance uncertainty matrix. The particles can therefore evolve by exchanging information to assess the optimized position of the ego-vehicle. The OKPS fuses data coming from embedded sensors (Low cost INS, GPS and Odometer) to perform a robust ego-vehicle positioning. The OKPS is compared to the EKF filter and to filters using particles (PF and SPF) on real data from our equipped vehicle.
机译:本文介绍了优化卡尔曼粒子群(OKPS)滤波器。该过滤器经过两年的研究,改进了Swarm粒子过滤器(SPF)。 OKPS被设计为协作和反应式的。它结合了粒子过滤器(PF)和超启发式粒子群优化(PSO)的优点,适用于自我车辆定位应用。除了在漫游优化和特定的过滤之间进行简单的融合(这导致了“ Swarm粒子过滤器”)外,OKPS还使用了扩展卡尔曼过滤器(EKF)的某些属性。 OKPS过滤器通过使用EKF协方差不确定性矩阵使粒子具有自诊断能力进行创新。因此,可以通过交换信息以评估自我车辆的最佳位置来释放粒子。 OKPS融合了来自嵌入式传感器(低成本INS,GPS和里程表)的数据,以执行可靠的自我车辆定位。将OKPS与EKF过滤器以及使用颗粒(PF和SPF)的过滤器进行比较,这些过滤器来自我们装备的车辆的真实数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号